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TABLE II. General Cauchy relations for first-. second-. and third-order elastic constants. Also listed are co­
efficients used in the general expressions for the elastic constants. 
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Elastic constants with Cauchy relations 
C iJ ... 

First order 

CI. C2• C3 

C 4• Cs• C6 

Second order 

Cu. C 22 • C 33 

CI2 =C66 • CI3 =Css • C2S =C44 

CIS. C16• C 24 • C 26 • CS4 ' C3S 

C14 =CS6 ' C2S =C46 • C 36 =C4S 

Third order 

CUI. C 222 • CS3S 

CU2 =CI66 • CU3 =CI55 • CI22 =C266 
CIS3 =C35S • C22S =C244 • C 233 =C344 

C 123 =C144 =C255 =CS66 =C456 

CU5 • CU6 • C 224 • C 226 • CSS4 ' CS35 

CI26 =C666 , CIS5 =C555 , C 234 =C 444 

CI14=CI56' C225=C246' C336=C345 

C 125 =CU6 =C566 • CI24 =C256 =C466 
CI34 =C356 =C455 • CU6 =CU5 =C556 
C 235 =C346 =C445 • C 236 =C245 =C446 

elastic constants. For convenience, the XjJ, .. , 

Y!}u ... , and ZfJklmn coefficients, which are used 
in Eqs. (17)-(19) to determine C~j. .. , have also 
been listed. 

Calculations have been completed for seven cubic 
structures, namely simple cubic, fcc, bcc, NaCI 
type, CsCI type, diamond, and zinc blende. The 
first-, second-, and third-order elastic constants 
with Cauchy relations for these structures are 

Cl ; Cu , Cl2 = C44 ; 

and 

CUl , CU2 = C155 ' CU3 = Cl44 = C456 • 

The electrostatic contributions to these constants 
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are listed in Table III in units of ZZ e2
/ a4

• where 
a is the lattice parameter. 

Four hexagonal structures, namely simple hex­
agonal, hcp, WC type, and wurtzite, have also been 
considered. For these structures, the elastic 
constants with Cauchy relations are 

Cl,CS; Cu , C33 , ClZ=C66=icu, Cl3 =CH ; 

and 

Cm = C266 = t (3C 111 - 2CZ22) , 

C333 , CU3 = Cl55 ' 

TABLE III. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Z 2e2/a\ where a is 
the lattice constant. 

simple cubic fcc bcc NaCl type CsCl type diamond zinc blende 

U -1.418648740 - 9.169 724148 - 3. 639 233 450 -13.980516757 - 2. 035 361509 - 21. 547192177 -15.131704416 
CI 0.472 882 913 3.056574716 1. 213 077 817 4.660172 252 0.678453836 7.182397392 5.043901472 
CII -0.143189083 - 6. 849 873 626 - 2. 697 885 714 - 25.108 469175 2.125129382 - 23.345 777443 -4.053717061 
CI2 - O. 637 729 828 -1.159925261 - O. 470 673 868 5.563976209 - 2. 080 245446 0.899292633 - 5. 538993678 
CIII -1. 747 954 699 34.065579503 9.235126065 164.229593204 -16.226944863 119.055300863 17.207017149 
Cm 1. 231 950057 0.091894314 2.127151252 -19.343623664 2.800648978 -1.163206824 1.530784079 
C123 0.724749027 5.615837678 -1. 900 933165 10.867366283 4.799929272 - 2.170 049 518 24.633400 230 
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TABLE IV. Electrostatic Brugger elastic constants for hexagonal structures with ideal structure parameters. Entries 
are in units of Z 2e21a4• where a is the lattice constant. 

simple hexagonal hcp 
(cia = 1) (cia =./f-) 

U -1.729575102 - 2. 292340210 
Cl 0.533603351 O. 764635 593 
C3 0.662368399 0.763069024 
C11 - O. 605 973 676 -1.288353922 
C33 - O. 401414 892 -1.137003974 
CI2 - O. 201991225 -0.429451308 
CI3 - 0.792845153 - O. 576101549 
C111 2.324128642 5.026701204 
C 222 - O. 532 222 756 2.217541686 
C333 - 0.708777482 5.511268055 
CII2 -1.248985111 -0.680155470 
C122 1. 607 366 288 2.129004048 
C 113 1. 954 724 848 2 .095223879 
C 123 0.651574949 O. 698407 960 
Cl33 1. 357925970 0.086875908 

Electrostatic contributions to these elastic con­
stants for ideal structure parameters are listed in 
Table IV in units of Z 2e2 / a' . For all the hexagonal 
structures, our choice of Cartesian axes (in Mil­
ler-Bravais indices) has bee):l1 axis = [1010]; 2 
axis = [1210 ]; and 3 axis = [0001]. It should be 
mentioned that, for the hcp structure, Cousins5 

has chosen basal axes rotated 90 0 with respect 
to ours. Thus, his CU1 corresponds to our C222 , 

etc. However, our choice of axes is consistent 
with the only two sets of measured third-order 
elastic constants for hcp metals. 14 •15 Also the dif­
ferent choice of axes eliminates the discrepancy, 
noted by Naimon et al., 16 in certain Fuchs's con­
stants calculated by Cousins! 

The results presented in Tables III and IV rep­
resent a higher degree of accuracy than those of 
earlier calculations. However, our results are 
essentially in agreement with those reported ear­
lier (fcc, 1-3,9 bcc, 1-3,6,9 NaCl and CsCl,7 zinc 
blende,8 and hcp5). Also, all results were checked 
independently by doing a Fuchs -type calculation for 
each structure [Eq. (11) with >t= (n~)1/3]. Other 
useful checks are the relations 

where, as usual, repeated indices are to be sum­
med. These can be easily derived, for example, 
by relating Fuchs and Brugger constants. All 
calculations were performed on IBM 360 and 
Xerox Sigma 5 computers. Convergence of all 
sums was such that the maximum error in the 
tabulated constants was ± 1 x 10 -12. The subroutine 

WCt~ wurtzite 
(cla=jf) (cla=Jf. u=i 

- 0.873690 983 -3.790469934 
-0.577163952 1. 237266468 

2.028018888 1. 315 936 998 
2. 966252428 - 2. 637 875499 

-1. 637033899 - 3. 558 546 850 
0.988750809 - O. 879 291833 

- 2. 223 511382 -0.194632072 
-15.767553741 12.580565280 
-19.362925160 2.779206544 

2.608789547 26.442451932 
- 5. 310 733 599 - 3. 364 702185 
-1. 715 362181 6.436 656 550 

6.247025199 3.973514399 
2.082341733 1. 324 504 800 
2.788189975 - 4. 324858 840 

for the complementary error function, necessary 
to generate the <I? -11 2 functions, was from an IBM 
routine with a relative error of less than 4 x 10-16 . 

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN 
DERIV ATIVES 

In order to obtain the internal-strain contribu­
tion to the elastic constants, it is sufficient to 
know the energy density of the homogeneously de­
formed lattice as a function of both external and 
internal strains (see Appendix A). However, since 
the internal strains are determined from the total 
energy denSity, the electrostatic internal-strain 
contribution -to the elastic constants cannot be ob­
tained directly. It is still possible, though, to de­
termine electrostatic internal-strain derivatives 
of the form 

(26) 

where W(lI) is the internal strain associated with 
the lith ion of the unit ccll (lI= 0, 1"", s -1). 
These derivatives would be combined with those 
ariSing from other terms of the energy density, 
thus resulting in the total internal-strain contri­
bution to the elastic constants. 

Using the method of homogeneous deformation, 
,derivatives of U;.(Ti, ~(v)) can be easily performed 
(see Appendix B). IntrodUCing the dimensionless 
parameter t = [T(V)- T(Jl)l!n~/3, as well as 
r = R(~~)/ n~/3 and g= n~/3G(h)/ 21T, the expressions 
for the electrostatic internal-strain derivatives 
through third-order are 


