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TABLE II. General Cauchy relations for first-, second-, and third-order elastic constants. Also listed are co-
efficients used in the general expressions for the elastic constants.

Types Elastic constants with Cauchy relations
ijklmn Cij... Xijo. Yijnt--- Z iikimn
First order
n Cl! Cz, c3 1
JK Gy €isiC4 0
Second order
IIII Cil’ sz, Css 3 Sglz
JJ C1p=Cgg, C13=Cs5, Cp3=Cy 1 gi+g}
JJJK Ci5: Cigs Cag, Cag, Cyy, Css 0 38K
IIJK C14=Cs6, Ca5=Cyg, C36=Cy5 0 8I8K
Third order
mmnn Cu11s Cozps Cgs 15 45g% 15g1
mirJJd Ci12=Cigs» C113=Cs5: Ci22 =Cogs 3 6g%+3¢g} g1+6gte}
C133=C3s5: Ca23=Cou» C233=Cs3u
I1JJKK C123=C144=C255=Cgg6 =Cys¢ 1 gi+el vk gie}+eiet+abe}
JJIJIK Cu5s Ci1gs Caaas Co2g» Ca34> Cass 0 15g,8x 10¢% gx
JJJKKK Ci26=Cegggs C135=Cps5: C234=Cauma 0 988K 3¢, gx(e} +gb)
IJK C114=C156, Ca25=Caags C336=Caus 0 3gs8x 62%gs gk
TJJIK C125=C146 =Cs6> C124=Ca56=Cues 0 3grgx gr8xBg}+g%)
C134=C356=Cys5:. C136=C145=Cjss6
Cy35 =C345=Cuss Cags =Cay5=Cuse
elastic constants. For convenience, the X,,,.., are listed in Table III in units of Z%¢%/a*, where
Yinie.., and Zy,,,., coefficients, which are used a is the lattice parameter.
in Egs. (17)-(19) to determine C3;..., have also Four hexagonal structures, namely simple hex-
been listed. agonal, hcp, WC type, and wurtzite, have also been
Calculations have been completed for seven cubic considered. For these structures, the elastic
structures, namely simple cubic, fcc, bee, NaCl constants with Cauchy relations are

type, CsCl type, diamond, and zinc blende. The
first-, second-, and third-order elastic constants
with Cauchy relations for these structures are and

Ci; Cn, Cr2=Cys Cint, Caz, Ciia=Ciee=5 (—2C11+3Ca),

Ci, C3; Cy, Csy, C12=Cee=3C1, C13=Cy;

and

_ _1 B
Ci11, C112=Cyss, Cia3=Cuaa=Cusg - C122= Cas6=5(3C111 = 2Caza) »

The electrostatic contributions to these constants Cssz, Ci13=Ciss,

TABLE IIl. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Z%%/a?, where «a is
the lattice constant.

simple cubic fee bee NaCl type CsCl type diamond zinc blende

U —1.418648740 —9.169724148 —3.639233450 —13.980516757 —2,035361509 —21.547192177 —15.131704 416
Cy 0.472882913 3.056574716  1.213077817 4.660172252 0.678453 836 7.182397 392 5.043901 472
Cyy —0.143189083 —6.849873626 —2.697885714 —25.108469175 2.125129382 —23.345777443 —4.053717061
Cyy —0.637729828 —1.159925261 —0.470673868 5.563 976209 —2.080 245446 0.899292633 —5.538993678
Cyyy —1.747954699 34.065579503 9.235126065 164.229593204 —16.226944863 119.055300863 17.207017149
Cyp 1.231950057 0.091894314  2,127151252 —19.343 623664 2.800648978 —1.163206824 1.530784 079
Ciz  0.724749027 5.615837678 —1.900933165  10.867 366283 4.799929272 -2.170049518  24.633400 230
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TABLE IV. Electrostatic Brugger elastic constants for hexagonal structures with ideal structure parameters. Entries
are in units of Z%?%/a’, where a is the lattice constant.

simple hexagonal
(¢/a=1)

hep
(c/a=j§':)

wC
(c/a=\73)

wurtzite
(c/a =./§I, u=%

-1.729575102
0.533 603 351
0.662 368 399

—0.605973 676

—0.401414892

—0.201991 225

—0.792845153
2.324128 642

—0.532 222756

—0,708777 482

—-1.248985111
1.607 366 288
1.954 724 848
0.651 574 949
1.357 925 970

—2.292340 210
0.764 635593
0.763069024

—1.288353922

—-1.137003 974

—0.429451308

—0.576101 549
5.026 701 204
2.217541686
5.511 268055

—0.680155470

2.129004 048

2.095223 879
0.698407 960
0.086875908

—0.873690983
—0.577163952

2.028018 888

2.966252428
—1.637033899
0.988750809
—2.223511382
—15.767553 741
—19.362925160
2.608 789547
—5.310733599
—-1.715362181
6.247025199
2.082341733

. 2.788189975

—3.790469 934
1.237 266 468
1,315936 998

—2.637875499

—3.558 546 850

—0.879291833

—0.194632072

12.580 565 280
2.779206 544
26.442 451932

—3.364702185
6.436 656 550
3.973514 399
1.324 504 800

—4,324 858 840

Ci23=Cias = C366= Cys6= 5 Cr13, Ciss=Cauy -

Electrostatic contributions to these elastic con-
stants for ideal structure parameters are listed in
Table IV in units of Z%¢®/a*. For all the hexagonal
structures, our choice of Cartesian axes (in Mil-
ler -Bravais indices) has been 1 axis=[1010]; 2
axis=[1210]; and 3 axis=[0001]. It should be
mentioned that, for the hep structure, Cousins®
has chosen basal axes rotated 90° with respect

to ours. Thus, his C;y; corresponds to our Cyp;,
etc. However, our choice of axes is consistent
with the only two sets of measured third-order
elastic constants for hep metals.*'** Also the dif-
ferent choice of axes eliminates the discrepancy,
noted by Naimon et al., in certain Fuchs’s con-
stants calculated by Cousins.*

The results presented in Tables III and IV rep-
resent a higher degree of accuracy than those of
earlier calculations. However, our results are
essentially in agreement with those reported ear-
lier (fcc, 1**° bee,~*%°® NaCl and CsCl,” zinc
blende,® and hep®). Also, all results were checked
independently by doing a Fuchs-type calculation for
each structure [Eq. (11) with x=()'%]. Other
useful checks are the relations

::= —Usss C::“= 3U,s, nljkk: = 15U,
where, as usual, repeated indices are to be sum-
med. These can be easily derived, for example,
by relating Fuchs and Brugger constants. All
calculations were performed on IBM 360 and
Xerox Sigma 5 computers. Convergence of all
sums was such that the maximum error in the
tabulated constants was +1x 1072, The subroutine

for the complementary error function, necessary
to generate the & ,,, functions, was from an IBM
routine with a relative error of less than 4x 1078,

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN
DERIVATIVES

In order to obtain the internal-strain contribu-
tion to the elastic constants, it is sufficient to

" know the energy density of the homogeneously de-

formed lattice as a function of both external and
internal strains (see Appendix A). However, since
the internal strains are determined from the total
energy density, the electrostatic internal-strain
contribution ‘to the elastic constants cannot be ob-
tained directly. It is still possible, though, to de-
termine electrostatic internal-strain derivatives
of the form

o —L G
8w, (V) 8w (1) * * * 873 ;87 =0, W=0

(26)

where W(v) is the internal strain associated with
the vth ion of the unit ccll (¥=0, 1,.+.,5~-1),
These derivatives would be combined with those
arising from other terms of the energy density,
thus resulting in the total internal-strain contri-
bution to the elastic constants.

Using the method of homogeneous deformation,
Jderivatives of Ul(7, W(r)) can be easily performed
(see Appendix B). Introducing the dimensionless
parameter {=[7(v)- 7(1)]/Q8/3, as well as
F=R(1%)/0)/°® and g= Q}/2G(r)/27, the expressions
for the electrostatic internal-strain derivatives
through third-order are




