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TABLE II. General Cauchy relations for first-. second-. and third-order elastic constants. Also listed are co
efficients used in the general expressions for the elastic constants. 

Types 
ijklmn 

II 

JK 

IIII 

IIJJ 

JJJK 

IIJK 

l1IIII 

IIIIJJ 

IIJJKK 

JJJJJK 

JJJKKK 

IIIIJK 

"IIJJJK 

Elastic constants with Cauchy relations 
C iJ ... 

First order 

CI. C2• C3 

C 4• Cs• C6 

Second order 

Cu. C 22 • C 33 

CI2 =C66 • CI3 =Css • C2S =C44 

CIS. C16• C 24 • C 26 • CS4 ' C3S 

C14 =CS6 ' C2S =C46 • C 36 =C4S 

Third order 

CUI. C 222 • CS3S 

CU2 =CI66 • CU3 =CI55 • CI22 =C266 
CIS3 =C35S • C22S =C244 • C 233 =C344 

C 123 =C144 =C255 =CS66 =C456 

CU5 • CU6 • C 224 • C 226 • CSS4 ' CS35 

CI26 =C666 , CIS5 =C555 , C 234 =C 444 

CI14=CI56' C225=C246' C336=C345 

C 125 =CU6 =C566 • CI24 =C256 =C466 
CI34 =C356 =C455 • CU6 =CU5 =C556 
C 235 =C346 =C445 • C 236 =C245 =C446 

elastic constants. For convenience, the XjJ, .. , 

Y!}u ... , and ZfJklmn coefficients, which are used 
in Eqs. (17)-(19) to determine C~j. .. , have also 
been listed. 

Calculations have been completed for seven cubic 
structures, namely simple cubic, fcc, bcc, NaCI 
type, CsCI type, diamond, and zinc blende. The 
first-, second-, and third-order elastic constants 
with Cauchy relations for these structures are 

Cl ; Cu , Cl2 = C44 ; 

and 

CUl , CU2 = C155 ' CU3 = Cl44 = C456 • 

The electrostatic contributions to these constants 
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are listed in Table III in units of ZZ e2
/ a4

• where 
a is the lattice parameter. 

Four hexagonal structures, namely simple hex
agonal, hcp, WC type, and wurtzite, have also been 
considered. For these structures, the elastic 
constants with Cauchy relations are 

Cl,CS; Cu , C33 , ClZ=C66=icu, Cl3 =CH ; 

and 

Cm = C266 = t (3C 111 - 2CZ22) , 

C333 , CU3 = Cl55 ' 

TABLE III. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Z 2e2/a\ where a is 
the lattice constant. 

simple cubic fcc bcc NaCl type CsCl type diamond zinc blende 

U -1.418648740 - 9.169 724148 - 3. 639 233 450 -13.980516757 - 2. 035 361509 - 21. 547192177 -15.131704416 
CI 0.472 882 913 3.056574716 1. 213 077 817 4.660172 252 0.678453836 7.182397392 5.043901472 
CII -0.143189083 - 6. 849 873 626 - 2. 697 885 714 - 25.108 469175 2.125129382 - 23.345 777443 -4.053717061 
CI2 - O. 637 729 828 -1.159925261 - O. 470 673 868 5.563976209 - 2. 080 245446 0.899292633 - 5. 538993678 
CIII -1. 747 954 699 34.065579503 9.235126065 164.229593204 -16.226944863 119.055300863 17.207017149 
Cm 1. 231 950057 0.091894314 2.127151252 -19.343623664 2.800648978 -1.163206824 1.530784079 
C123 0.724749027 5.615837678 -1. 900 933165 10.867366283 4.799929272 - 2.170 049 518 24.633400 230 
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TABLE IV. Electrostatic Brugger elastic constants for hexagonal structures with ideal structure parameters. Entries 
are in units of Z 2e21a4• where a is the lattice constant. 

simple hexagonal hcp 
(cia = 1) (cia =./f-) 

U -1.729575102 - 2. 292340210 
Cl 0.533603351 O. 764635 593 
C3 0.662368399 0.763069024 
C11 - O. 605 973 676 -1.288353922 
C33 - O. 401414 892 -1.137003974 
CI2 - O. 201991225 -0.429451308 
CI3 - 0.792845153 - O. 576101549 
C111 2.324128642 5.026701204 
C 222 - O. 532 222 756 2.217541686 
C333 - 0.708777482 5.511268055 
CII2 -1.248985111 -0.680155470 
C122 1. 607 366 288 2.129004048 
C 113 1. 954 724 848 2 .095223879 
C 123 0.651574949 O. 698407 960 
Cl33 1. 357925970 0.086875908 

Electrostatic contributions to these elastic con
stants for ideal structure parameters are listed in 
Table IV in units of Z 2e2 / a' . For all the hexagonal 
structures, our choice of Cartesian axes (in Mil
ler-Bravais indices) has bee):l1 axis = [1010]; 2 
axis = [1210 ]; and 3 axis = [0001]. It should be 
mentioned that, for the hcp structure, Cousins5 

has chosen basal axes rotated 90 0 with respect 
to ours. Thus, his CU1 corresponds to our C222 , 

etc. However, our choice of axes is consistent 
with the only two sets of measured third-order 
elastic constants for hcp metals. 14 •15 Also the dif
ferent choice of axes eliminates the discrepancy, 
noted by Naimon et al., 16 in certain Fuchs's con
stants calculated by Cousins! 

The results presented in Tables III and IV rep
resent a higher degree of accuracy than those of 
earlier calculations. However, our results are 
essentially in agreement with those reported ear
lier (fcc, 1-3,9 bcc, 1-3,6,9 NaCl and CsCl,7 zinc 
blende,8 and hcp5). Also, all results were checked 
independently by doing a Fuchs -type calculation for 
each structure [Eq. (11) with >t= (n~)1/3]. Other 
useful checks are the relations 

where, as usual, repeated indices are to be sum
med. These can be easily derived, for example, 
by relating Fuchs and Brugger constants. All 
calculations were performed on IBM 360 and 
Xerox Sigma 5 computers. Convergence of all 
sums was such that the maximum error in the 
tabulated constants was ± 1 x 10 -12. The subroutine 

WCt~ wurtzite 
(cla=jf) (cla=Jf. u=i 

- 0.873690 983 -3.790469934 
-0.577163952 1. 237266468 

2.028018888 1. 315 936 998 
2. 966252428 - 2. 637 875499 

-1. 637033899 - 3. 558 546 850 
0.988750809 - O. 879 291833 

- 2. 223 511382 -0.194632072 
-15.767553741 12.580565280 
-19.362925160 2.779206544 

2.608789547 26.442451932 
- 5. 310 733 599 - 3. 364 702185 
-1. 715 362181 6.436 656 550 

6.247025199 3.973514399 
2.082341733 1. 324 504 800 
2.788189975 - 4. 324858 840 

for the complementary error function, necessary 
to generate the <I? -11 2 functions, was from an IBM 
routine with a relative error of less than 4 x 10-16 . 

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN 
DERIV ATIVES 

In order to obtain the internal-strain contribu
tion to the elastic constants, it is sufficient to 
know the energy density of the homogeneously de
formed lattice as a function of both external and 
internal strains (see Appendix A). However, since 
the internal strains are determined from the total 
energy denSity, the electrostatic internal-strain 
contribution -to the elastic constants cannot be ob
tained directly. It is still possible, though, to de
termine electrostatic internal-strain derivatives 
of the form 

(26) 

where W(lI) is the internal strain associated with 
the lith ion of the unit ccll (lI= 0, 1"", s -1). 
These derivatives would be combined with those 
ariSing from other terms of the energy density, 
thus resulting in the total internal-strain contri
bution to the elastic constants. 

Using the method of homogeneous deformation, 
,derivatives of U;.(Ti, ~(v)) can be easily performed 
(see Appendix B). IntrodUCing the dimensionless 
parameter t = [T(V)- T(Jl)l!n~/3, as well as 
r = R(~~)/ n~/3 and g= n~/3G(h)/ 21T, the expressions 
for the electrostatic internal-strain derivatives 
through third-order are 


