6

Types	Elastic constants with Cauchy relations				
ijklmn	<i>C</i> _{<i>ij</i>}	X_{ij}	Y_{ijkl}	Z_{ijklmn}	
	First order				
П	C_1, C_2, C_3	1			
JK	C_4, C_5, C_6	0			
	Second order				
IIII	C_{11}, C_{22}, C_{33}	3	$6g_I^2$		
IIJJ	$C_{12} = C_{66}, \ C_{13} = C_{55}, \ C_{23} = C_{44}$	1	$g_{I}^{2}+g_{J}^{2}$		
JJJK	$C_{15}, C_{16}, C_{24}, C_{26}, C_{34}, C_{35}$	0	$3g_Jg_K$		
IIJK	$C_{14} = C_{56}, \ C_{25} = C_{46}, \ C_{36} = C_{45}$	0	<i>gjgk</i>		
	Third order				
IIIIII	$C_{111}, C_{222}, C_{333}$	15	$45g_I^2$	$15g_I^4$	
IIIIJJ	$C_{112} = C_{166}, C_{113} = C_{155}, C_{122} = C_{266}$ $C_{133} = C_{355}, C_{223} = C_{244}, C_{233} = C_{344}$	3	$6g_I^2 + 3g_J^2$	$g_I^4 + 6 g_I^2 g_J^2$	
IIJJKK	$C_{123} = C_{144} = C_{255} = C_{366} = C_{456}$	1	$g_I^2 + g_J^2 + g_K^2$	$g_{I}^{2}g_{J}^{2} + g_{J}^{2}g_{K}^{2} + g_{K}^{2}g_{I}^{2}$	
JJJJJK	$C_{115}, C_{116}, C_{224}, C_{226}, C_{334}, C_{335}$	0	$15g_Jg_K$	$10g_J^3 g_K$	
JJJKKK	$C_{126} = C_{666}, C_{135} = C_{555}, C_{234} = C_{444}$	0	$9g_Jg_K$	$3g_J g_K (g_J^2 + g_K^2)$	
IIIIJK	$C_{114} = C_{156}, \ C_{225} = C_{246}, \ C_{336} = C_{345}$	0	$3g_Jg_K$	$6g_I^2g_Jg_K$	
ʻIIJJJK	$\begin{array}{c} C_{125} = C_{146} = C_{566}, \ C_{124} = C_{256} = C_{466} \\ C_{134} = C_{356} = C_{455}, \ C_{136} = C_{145} = C_{556} \\ C_{235} = C_{346} = C_{445}, \ C_{236} = C_{245} = C_{446} \end{array}$	0	$3g_Jg_K$	$g_J g_K (3g_I^2 + g_J^2)$	

TABLE II. General Cauchy relations for first-, second-, and third-order elastic constants. Also listed are coefficients used in the general expressions for the elastic constants.

elastic constants. For convenience, the X_{iji} ..., Y_{ijkl} ..., and Z_{ijklmn} coefficients, which are used in Eqs. (17)-(19) to determine C_{ij}^{es} ..., have also been listed.

Calculations have been completed for seven cubic structures, namely simple cubic, fcc, bcc, NaCl type, CsCl type, diamond, and zinc blende. The first-, second-, and third-order elastic constants with Cauchy relations for these structures are

 $C_1\,;\quad C_{11}\,,\quad C_{12}=C_{44}\,\,;$ and

 C_{111} , $C_{112} = C_{155}$, $C_{123} = C_{144} = C_{456}$.

The electrostatic contributions to these constants

are listed in Table III in units of $Z^2 e^2/a^4$, where *a* is the lattice parameter.

Four hexagonal structures, namely simple hexagonal, hcp, WC type, and wurtzite, have also been considered. For these structures, the elastic constants with Cauchy relations are

 C_1 , C_3 ; C_{11} , C_{33} , $C_{12} = C_{66} = \frac{1}{3}C_{11}$, $C_{13} = C_{44}$; and C_{111} , C_{222} , $C_{112} = C_{166} = \frac{1}{5}(-2C_{111} + 3C_{222})$,

$$C_{122} = C_{266} = \frac{1}{5} \left(3C_{111} - 2C_{222} \right)$$

$$C_{333}$$
, $C_{113} = C_{155}$

TABLE III. Electrostatic Brugger elastic constants for cubic structures. Entries are in units of Z^2e^2/a^4 , where a is the lattice constant.

	simple cubic	fcc	bcc	NaCl type	CsCl type	diamond	zinc blende
U	-1.418648740	-9.169724148	-3.639233450	-13.980 516 757	-2.035 361 509	-21.547192177	-15.131704416
C_1	0,472882913	3.056574716	1.213077817	4.660172252	0.678453836	7.182397392	5.043 901 472
C11	-0.143189083	-6.849873626	-2.697885714	-25.108469175	2.125 129 382	-23.345777443	-4.053717061
C_{12}	-0.637729828	-1.159 925 261	-0.470673868	5.563976209	-2.080245446	0.899292633	-5,538993678
C111	-1.747954699	34.065 579 503	9.235126065	164.229593204	-16,226 944 863	119.055 300 863	17.207017149
C112	1,231 950 057	0.091894314	2.127 151 252	-19.343623664	2.800 648 978	-1.163206824	1.530784079
C 123	0.724749027	5.615837678	-1.900 933 165	10.867366283	4.799 929 272	-2.170 049 518	24.633400230

3613

	simple hexagonal $(c/a=1)$	$\frac{hcp}{(c/a=\sqrt{\frac{8}{3}})}$	WC type $(c/a = \sqrt{\frac{8}{3}})$	wurtzite $(c/a = \sqrt{\frac{8}{3}}, u = \frac{3}{8}$	
U	-1.729 575 102	-2.292340210	-0.873690983	-3.790 469 934	A 4314
C1	0.533 603 351	0.764635593	-0.577163952	1.237 266 468	
C ₃	0.662368399	0.763069024	2.028018888	1.315 936 998	
C11	-0.605973676	-1.288353922	2.966252428	- 2.637 875 499	
C33	-0.401414892	-1.137003974	-1.637033899	-3.558 546 850	
C12	-0.201 991 225	-0.429451308	0.988750809	-0.879291833	
C ₁₃	-0.792845153	-0.576101549	-2.223511382	-0.194632072	
C111	2.324 128 642	5.026701204	- 15.767 553 741	12.580 565 280	
C222	-0.532 222 756	2.217 541 686	-19.362925160	2.779 206 544	
C333	-0.708777482	5.511 268 055	2.608789547	26.442451932	
C112	-1.248 985 111	-0.680155470	-5.310733599	-3.364702185	
C122	1.607 366 288	2.129004048	-1.715362181	6.436656550	
C113	1.954724848	2.095 223 879	6.247025199	3.973 514 399	
C123	0.651 574 949	0.698407960	2.082341733	1.324 504 800	
C ₁₃₃	1.357 925 970	0.086875908	2.788189975	-4.324 858 840	

TABLE IV. Electrostatic Brugger elastic constants for hexagonal structures with ideal structure parameters. Entries are in units of $Z^2 e^2/a^4$, where *a* is the lattice constant.

 $C_{123} = C_{144} = C_{366} = C_{456} = \frac{1}{3}C_{113}$, $C_{133} = C_{344}$.

Electrostatic contributions to these elastic constants for ideal structure parameters are listed in Table IV in units of $Z^2 e^2/a^4$. For all the hexagonal structures, our choice of Cartesian axes (in Miller-Bravais indices) has been 1 axis = $[10\overline{10}]$; 2 axis = $[\overline{1210}]$; and 3 axis = [0001]. It should be mentioned that, for the hcp structure, Cousins⁵ has chosen basal axes rotated 90° with respect to ours. Thus, his C_{111} corresponds to our C_{222} , etc. However, our choice of axes is consistent with the only two sets of measured third-order elastic constants for hcp metals.^{14,15} Also the different choice of axes eliminates the discrepancy, noted by Naimon *et al.*,¹⁶ in certain Fuchs's constants calculated by Cousins.⁴

The results presented in Tables III and IV represent a higher degree of accuracy than those of earlier calculations. However, our results are essentially in agreement with those reported earlier (fcc, $^{1-3,9}$ bcc, $^{1-3,6,9}$ NaCl and CsCl, 7 zinc blende, 8 and hcp⁵). Also, all results were checked independently by doing a Fuchs-type calculation for each structure [Eq. (11) with $\lambda = (\Omega'_0)^{1/3}$]. Other useful checks are the relations

$$C_{ii}^{es} = -U_{es}, \quad C_{iijj}^{es} = 3U_{es}, \quad C_{iijjkk}^{es} = -15U_{es},$$

where, as usual, repeated indices are to be summed. These can be easily derived, for example, by relating Fuchs and Brugger constants. All calculations were performed on IBM 360 and Xerox Sigma 5 computers. Convergence of all sums was such that the maximum error in the tabulated constants was $\pm 1 \times 10^{-12}$. The subroutine for the complementary error function, necessary to generate the $\Phi_{-1/2}$ functions, was from an IBM routine with a relative error of less than 4×10^{-16} .

IV. GENERAL EXPRESSIONS FOR INTERNAL-STRAIN DERIVATIVES

In order to obtain the internal-strain contribution to the elastic constants, it is sufficient to know the energy density of the homogeneously deformed lattice as a function of both external and internal strains (see Appendix A). However, since the internal strains are determined from the total energy density, the electrostatic internal-strain contribution to the elastic constants cannot be obtained directly. It is still possible, though, to determine electrostatic internal-strain derivatives of the form

$$U_{ijkl}^{(\nu p)\,(\mu q)} \cdots = \left(\frac{\partial^n U_{es}'}{\partial \overline{w}_p(\nu) \partial \overline{w}_q(\mu) \cdots \partial \eta_{ij} \partial \eta_{kl} \cdots} \right)_{\overline{\eta}=0, \ \overline{w}=0}$$
(26)

where $\overline{w}(\nu)$ is the internal strain associated with the ν th ion of the unit ccll ($\nu = 0, 1, \dots, s-1$). These derivatives would be combined with those arising from other terms of the energy density, thus resulting in the total internal-strain contribution to the elastic constants.

Using the method of homogeneous deformation, derivatives of $U'_{es}(\vec{\eta}, \vec{\varpi}(\nu))$ can be easily performed (see Appendix B). Introducing the dimensionless parameter $\vec{t} = [\vec{\tau}(\nu) - \vec{\tau}(\mu)]/\Omega_0^{1/3}$, as well as $\vec{r} = \vec{R} (\frac{10}{\nu\mu})/\Omega_0^{1/3}$ and $\vec{g} = \Omega_0^{1/3} \vec{G}(h)/2\pi$, the expressions for the electrostatic internal-strain derivatives through third-order are